Iron and cadmium uptake by duodenum of hypotransferrinaemic mice

Kishor B. Raja¹, Shahnaz E. Jafri¹, Timothy J. Peters¹ & Robert J. Simpson^{2,3,*}

¹Department of Clinical Biochemistry, King's College London, London, UK; ²Nutrition Sciences Research Division, King's College London, London, UK; ³Department of Biochemistry, King's College London, Franklin Wilkins Building, Stamford St, London, SE1 9NN, UK; *Author for correspondence (E-mail: robert.simpson@kcl.ac.uk)

Received 20 October 2005; Accepted 14 December 2005

Key words: cadmium toxicity, iron absorption, iron deficiency, iron overload

Abstract

Absorption from food is an important route for entry of the toxic metal, cadmium, into the body. Both cadmium and iron are believed to be taken up by duodenal enterocytes via the iron regulated, proton-coupled transporter, DMT1. This means that cadmium uptake could be enhanced in conditions where iron absorption is increased. We measured pH dependent uptake of 109 Cd and 59 Fe by duodenum from mice with an *in vitro* method. Mice with experimental (hypoxia, iron deficiency) or hereditary (hypotransferrinaemia) increased iron absorption were studied. All three groups of mice showed increased 59 Fe uptake (p < 0.05) compared to their respective controls. Hypotransferrinaemic and iron deficient mice exhibited an increase in 109 Cd uptake (p < 0.05). Cadmium uptake was not, however, increased by lowering the medium pH from 7.4 to 6. In contrast, 59 Fe uptake (from 59 FeNTA₂) and ferric reductase activity was increased by lowering medium pH in control and iron deficient mice (p < 0.05). The data show that duodenal cadmium uptake can be increased by hereditary iron overload conditions. The uptake is not, however, altered by lowering medium pH suggesting that DMT1-independent uptake pathways may operate.

Introduction

Toxic metals such as cadmium (Cd) remain a significant environmental health hazard for humans (Friberg et al. 1986). The anthropogenic release of cadmium to the environment and consequently its serious health threat has been recognised for more than a century. Exposure of humans to Cd leads to toxicity to a number of tissues/organs, including liver, kidney, lung, bone and reproductive organs and the immune system (Zalups & Ahmad 2003). Exposure and absorption of cadmium in humans generally occurs via one of two main routes: inhalation or ingestion (Zalups & Ahmad 2003). Absorption of cadmium from ingested sources occurs via the gastrointestinal tract (Bressler et al. 2004). Early animal studies showed that maximal absorption of cadmium (Sorensen et al. 1993;

Andersen *et al.* 1994) occurs in the upper small intestine by a carrier-mediated process (Foulkes 1979). The uptake of cadmium and its subsequent distribution to target tissues is dependent on the chemical form of cadmium presented to the intestinal epithelium (Zalups & Ahmad 2003).

Recent work has greatly increased understanding of the absorptive mechanism for iron (Miret et al. 2003). Iron is believed to be reduced by mucosal surface reductases such as Dcytb (Cybrd1), then transported into enterocytes by the divalent metal ion transporter DMT1 (Slc11a2). In enterocytes, DMT1 has been shown to be present in the lumenal or brush border membrane, where it is believed to serve as the major pathway for the absorption of dietary non-haem iron (Gunshin et al. 1997, 2005; Tandy et al. 2000). Iron absorption is enhanced when iron requirements

are increased as occurs in, for example, iron deficiency or hypoxia. Genetic diseases can also be associated with increased iron absorption, despite iron overload being present in, for example, hypotransferrinaemia. Duodenal enterocyte DMT1 levels are increased not only by iron deficiency (Gunshin *et al.* 1997), but also by other alterations in iron metabolism associated with increased iron absorption including hypotransferrinaemia (Canonne-Hergaux *et al.* 2001; Latunde-Dada *et al.* 2004).

Iron deficiency increases the gastrointestinal absorption of cadmium (reviewed in Zalups & Ahmad 2003), which is believed to be taken up by enterocytes via several pathways, the most important of which is likely to be via the ironregulated metal transporter DMT1 (Bressler et al. 2004). Thus cadmium uptake by the enterocytelike cell line, Caco2, is increased by lowering the pH, a characteristic of metal transport by DMT1 (Elisma & Jumarie 2001; Bannon et al. 2003). Furthermore, DMT1 expressed in *Xenopus* oocytes can transport not only Fe, but also Cd and other metal ions in a pH dependent fashion (Gunshin et al. 1997; Okubo et al. 2003). Disruption of DMT1 in Caco2-cells reduces cadmium uptake (Bannon et al. 2003). Moreover, Park et al. showed that increased DMT1 in iron deficient rats is closely associated with increased cadmium absorption (Park et al. 2002). Taken together these findings imply that intestinal cadmium uptake could be increased in a variety of disorders characterised by increased iron absorption (and therefore DMT1), including hereditary iron overload conditions. Interestingly, a study has shown increased blood cadmium levels in phlebotomised haemochromatosis patients (Akesson et al. 2000), while others have shown increased blood cadmium (Barany et al. 2005), or cadmium absorption (Flanagan et al. 1978), in human iron deficiency. Previous studies in animals have focussed on the effect of dietary iron levels on cadmium absorption (Ragan 1977; Flanagan et al. 1978; Park et al. 2002). The only study of cadmium absorption in animals with iron metabolism altered by non-dietary means being that of Flanagan et al. (1980), who looked at mice made iron deficient by bleeding.

The purpose of the present study was to investigate uptake of iron and Cd by duodenal fragments from mice with altered iron metabolism, namely, hypotransferrinaemic mice and those rendered hypoxic or iron deficient, conditions known to enhance intestinal absorption of iron. To gain further insight into the possible role of DMT1, we also measured pH-dependence of Fe and Cd²⁺ uptake.

Materials and methods

Animals

Male, CD1 strain, 6–8 week old (25–30) mice were obtained from Charles Rivers and maintained in the Comparative Biology Unit at King's College School of Medicine and Dentistry, Denmark Hill. The genetically hypotransferrinaemic mice originated from balbc/j background and were maintained in a closed colony. Trf^{hpx/hpx} (homozygous mutant mice) or Trf^{+/-} (normal littermates – a mixed group of heterozygotes and wild-type, as heterozygote mice have normal iron absorption rates (Raja et al. 1994)) were studied at 2-6 month of age. Trfhpx/hpx are phenotypically distinguishable at birth by their pale appearance and were maintained by weekly injections of mouse serum $(150 \,\mu g)$ to 1 mg transferrin) as described by Simpson *et al.* (1991).

Hypoxic and hypotransferrinaemic mice were fed on a commercial pelleted rodent diet, except on the day of experiment, while water was provided ad lib. Iron deficiency was induced by feeding CD1 mice an iron-free synthetic diet for 3 weeks from weaning. Controls were fed the same diet supplemented with iron (62 mg/kg) (see Simpson 1996 for details). Iron deficiency was confirmed by measuring liver non-haem iron as described by Simpson and Peters (1990). Animal experiments were conducted under the authority of licences issued by the UK Home Office.

To induce hypoxia, caged animals were placed in a steel chamber (80 cm diameter \times 48 cm height) the pressure of which was lowered to 53.3 kPa (approximately 0.5 atm), and maintained at this pressure for 72 h. Food and water was freely provided during this period. The decompression corresponds to a simulated altitude of 15,000–16,000 feet above sea level (Frisancho 1975). Airflow through the chamber was fast enough to maintain CO_2 levels below 0.2% (determined using an infrared CO_2 analyser) (Raja *et al.* 1987b).

Reagents

Chemicals were purchased from BDH-Merck or Sigma Chemical Company Ltd. (Poole, Dorset). ¹⁰⁹CdCl₂ and ⁵⁷Co-cyanocobalamin was purchased from Amersham International. ⁵⁹FeCl₃ was purchased from NEN-Dupont, Stevenage, Herts, UK (specific activity 0.19–2.78 TBq/g).

In vitro uptake of 59 Fe or 109 Cd

An in vitro technique, described by Raja et al. (1987a) was used for determining rates of iron or cadmium uptake by duodenal fragments. Mice were anaesthetised with halothane and killed by cervical dislocation. Pieces of duodenum were removed and cleared of any adjoining tissue. The duodenum was then cut length wise and sectioned into fragments (2-6 mg wet weight). These were rinsed in warm (37 °C) oxygenated medium (125 mM NaCl, 3.5 mM KCl, 10 mM D-glucose, 8 mM MES, 8 mM Hepes, pH adjusted to 6.0 or 7.4 with NaOH/HCl as required) and incubated in a similar buffer containing 100 or 250 μ M metal as either FeNTA₂, FeSO₄, Fe ascorbate (1:20) or CdCl₂ together with Co-cyanocobalamin (5 nM). The latter was used as an extracellular fluid (ECF) marker for adherent medium and non-specific permeation of the metals. To these solutions were added tracer doses of ⁵⁹FeCl₃ or ¹⁰⁹Cd and ⁵⁷Cocyanocobalamin. The pH of the medium was checked prior to incubations. Incubation was for 5 min after which time fragments were removed, blotted and rinsed in 1 ml of ice-cold buffer. After reblotting and weighing, the amount of ⁵⁷Co and ⁵⁹Fe or ¹⁰⁹Cd in the tissue samples and in an aliquot of the medium was measured by twin channel gamma counting (LKB Wallac 1280, Finland).

Iron reduction measurements were performed by including 1mM ferrozine in FeNTA₂-containing medium and removing aliquots for spectrophotometric determination of Fe²⁺ at 562 nm, as described previously (Raja *et al.* 1992).

Statistical analysis

The data are presented as mean \pm SEM for (*n*) determinations. The Student's *t*-test was used (paired or unpaired as appropriate) where comparison was between one control and one test group. When appropriate, multiple groups were

compared by ANOVA with the SPSS program, followed by 't' testing to identify individual group differences.

Results

Uptake of Fe and Cd was measured with duodenum from hypotransferrinaemic mice which have a genetic defect in iron metabolism leading to greatly enhanced rates of iron absorption. We found higher uptake of ferrous iron at pH 6.0 (FeSO₄, Fe ascorbate) than was seen with the ferric complex FeNTA₂ (Figure 1). This could be due to the fact that Fe in FeNTA₂ is chelated, thus decreasing its availability for transport, or alternatively, it could be that the ferric iron in FeNTA2 has to be reduced by ferric reductases prior to transport, thus slowing the overall uptake rate. Clear increases in iron uptake were seen at both pH 6 and 7.4 in hypotransferrinaemic mice. Cd uptake paralleled the uptake rate for ferrous iron and was significantly increased in hypotransferrinaemic mice at pH 6.0. We also found evidence for increased cadmium uptake in hypotransferrinaemia at pH 7.4, however, this did not reach significance at the 0.05 level (p = 0.052).

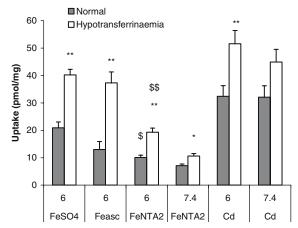


Figure 1. Iron and cadmium uptake by hypotransferrinaemic mice. Normal (balbc/j mice of wild-type or heterozygous genotype) and mutant (trf^hpx/hpx) mouse duodenum was incubated at pH 6 or 7.4 with $100\,\mu\text{M}$ FeSO₄, FeNTA₂, Fe ascorbate or CdCl₂. 5–12 determinations were performed in each experimental group. Uptake of all metal complexes at pH 6 was increased by hypotransferrinaemia (**p < 0.01) as was uptake of iron from FeNTA₂ at pH 7.4 (*p < 0.02). Lowering the pH significantly increased uptake of FeNTA₂ in normal (\$p < 0.02) and hypotransferrinaemic mice (\$\$p < 0.001).

There was also a clear increase in iron uptake from FeNTA₂ on lowering medium pH from 7.4 to 6.0 in both normal and hypotransferrinaemic mice, whereas no such effect was seen with Cd in normal mice. Cd uptake tended to be higher at pH 6 than at 7.4 in hypotransferrinaemic mice, but the effect did not approach statistical significance (p=0.33). It was not possible to perform pH dependency studies with uncomplexed ferrous iron due to the instability of this ion in oxygenated buffers (Dorey *et al.* 1993).

Figure 2 displays the uptake of cadmium and iron in normal and hypoxic mice at pH 6.0 and 7.4. Iron uptake from FeNTA₂ showed an increase with both hypoxic exposure and with lowering medium pH from 7.4 to 6.0. Cadmium uptake showed no significant increases either with hypoxia or with lowering medium pH.

In iron deficiency, iron uptake was increased significantly at both pH 6.0 and 7.4 with FeNTA₂ complex as the iron source (Figure 3). Iron uptake from FeNTA₂ showed a tendency to increase on lowering the pH from 7.4 to 6.0, however, in this model, the effect did not reach statistical significant (p=0.064). Cadmium uptake showed a

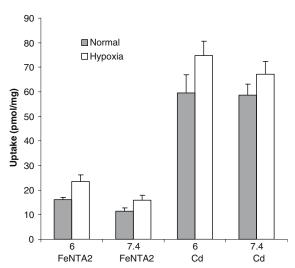


Figure 2. Iron and cadmium uptake in hypoxic mice. Normal (CD1 mice fed on standard lab diet) and hypoxic mice duodenum was incubated at pH 6.0 and 7.4 with 250 μ M Fe or Cd. 8–12 determinations were performed in each experimental group. ANOVA revealed that uptake of FeNTA₂ was increased by hypoxia (p < 0.05) and by reduced pH (p < 0.05) although individual group comparisons did not reach significance. No significant effects were seen with cadmium.

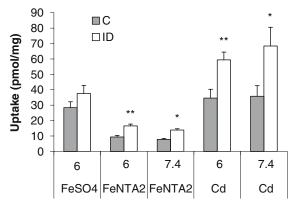


Figure 3. Iron and cadmium uptake in iron deficiency. Control (CD1 mice fed on iron supplemented diet, C) and Fe-deficient (ID) mice duodenum were incubated at pH 6.0 and 7.4 with $100\,\mu\text{M}$ metal ion concentration. 9–17 determinations were performed in each experimental group. Uptake of all metal complexes except FeSO₄ at pH 6 was increased by iron deficiency (**p<0.01) as was uptake of FeNTA₂ and Cd at pH 7.4 (*p<0.05). Effects of pH did not reach statistical significance.

significant increase with iron deficiency but not with lowering pH from 7.4 to 6.0.

To further investigate the pH dependency of iron uptake, ferric reductase activity was assayed at pH 6.0 and 7.4 in control and iron deficient mice. Results show that reductase activity is increased by lowering medium pH and also by iron deficiency (Figure 4).

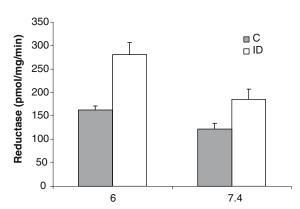


Figure 4. Reductase activity in duodenum from control and iron deficiency. Control (CD1 mice fed on iron supplemented diet) and iron deficient mouse duodenum was incubated at pH 6.0 and 7.4. $100\,\mu\text{M}$ Fe was used. 6 determinations were performed in each experimental group. ANOVA revealed that both pH and iron deficiency significantly affected reductase activity (p < 0.05), although individual group comparisons did not reach significance.

Discussion

We used a well characterised in vitro method that measures initial rates of metal ion uptake by mouse duodenum (Raja et al. 1987a, 1987b), thus effects of basolateral transfer are presumed to be excluded in this system at these short incubation times. We have demonstrated that not only mucosal uptake of Fe but also Cd was increased by alterations in iron metabolism including a genetic anaemia (hypotransferrinaemia). Duodenal DMT1 levels have been shown to be increased by iron deficiency and especially hypotransferrinaemia (Canonne-Hergaux et al. 2001; Dupic et al. 2002). This is likely to be secondary to decreased hepcidin production (Weinstein et al. 2002). There were also some indications that cadmium uptake increased in hypoxic mice, but this did not reach significance, perhaps because the increase in duodenal DMT1 in these mice is modest (Miret S, Mckie, A, and Simpson, R, unpublished observation 2002). Overall these findings show that enhanced uptake of dietary cadmium could be significant in conditions of altered iron metabolism i.e., not only iron deficiency but also some iron overload conditions. It is noteworthy that previous studies showing increased cadmium absorption when iron absorption is increased have focussed on iron deficiency. This condition is associated with decreased dietary and/or mucosal iron levels (Pountney et al. 1999) while hypotransferrinaemic mice have normal dietary and mucosal iron levels (Pountney et al. 1999). Thus increased cadmium absorption in the latter case would not be attributable simply to decreased competition from iron.

The study of pH dependence of transition metal ion uptake in physiological systems is complicated by possible interactions of protons or hydroxide ions with the metals themselves or their complexing agents, where present. Cadmium can, however, exist as Cd2+ in the physiological pH range, therefore allowing study of pH dependence of Cd uptake. Our study is, we believe, the first to investigate pH dependence of cadmium uptake by intact duodenum. Previous studies of pH dependence of cadmium (or iron) uptake have employed cultured cells or DMT1-expressing Xenopus oocytes. In attempting to relate our findings to those previous studies, we must consider differences in the media and cadmium concentrations used and the responses of tissue to pH changes.

Elisma and Journarie (2001) suggested that pHinsensitive chloride complexes of cadmium would dominate in typical uptake experiments with physiological media. Our physiological media are, however, gassed with 5% CO₂ therefore the highly pH sensitive CdHCO₃ may dominate Cd speciation. An additional complicating factor in comparing animal studies with cultured cell and *Xenopus* oocyte work is that the latter two systems reveal a $K_{\rm m}$ for Cd uptake of $1 \,\mu{\rm M}$, this being attributed to DMT1. pH sensitive Cd uptake seems to be restricted to this concentration range (Elisma & Jumarie 2001). We used a higher Cd concentration (100 μ M or 250 μ M) as in most other animal studies (e.g. Flanagan et al. 1980; Park et al. 2002) used $100 \, \mu M$). Therefore although we have observed Cd uptake that increases in association with increased iron uptake, this may not all be mediated by DMT1. Non-DMT1 mechanisms for Cd membrane transport have been proposed (Foulkes 1991; Lou et al. 1991; Hinkle et al. 1993; Elisma & Jumarie 2001). Furthermore, data in (Savigni & Morgan 1998) show that rats with mutated DMT1 lack high affinity $(K_{\rm m} < 1 \,\mu{\rm M})$ Cd transport in reticulocytes but retain a low affinity mechanism that dominates at higher Cd concentrations and relates to the mechanism reported by (Lou et al. 1991) in erythrocytes. On the other hand, it may be that pH dependence effects on DMT1 are not observable in our system, however we also studied iron uptake and found that a pH dependence was demonstra-

It is possible that the mouse duodenal fragments are able to maintain a constant low pH microclimate at the enterocyte surface (Lucas 1983) independent of the medium pH. Our *in vitro* system, however, involves removal of the mucous layer by blotting the tissue, as well as vigorous agitation of the tissue by bubbling to reduce unstirred layers.

Iron however, presents greater difficulties for pH dependence studies as the Fe^{2^+} ion is liable to oxidation in a process that speeds up with increasing pH, while Fe^{3^+} forms complexes with hydroxide ions. Additionally, many Fe^{3^+} chelators (including NTA) bind protons in competition with Fe^{3^+} . In general lowering medium pH will increase the stability and concentration of Fe^{2^+} ions and if these are the species transported by e.g. DMT1, then there will be increased transport rates

independent of any pH effects on the transport protein itself. Previous studies of pH dependence of metal transport have focussed on cultured cell models or *Xenopus* oocytes and have used various medium metal concentrations (1–10 μ M (Elisma & Jumarie 2001; Bannon *et al.* 2003); 100 μ M; Tandy *et al.* 2000). All used Fe ascorbate solutions that are liable to oxidation (Dorey *et al.* 1993) at least at the higher Fe concentrations.

A pH dependence for Fe uptake was demonstrated with the FeNTA2 complex, but as discussed above, this complex has pH dependent stability. A similar dependence was found by measuring ferric reductase activity (reduction of Fe³⁺ in the FeNTA₂ complex precedes Fe²⁺ transport by DMT1), suggesting that the pH dependence of uptake did not have to be due to pH dependence of DMT1. We were unable to provide support for a pH dependent mechanism for Cd uptake by mouse duodenal enterocytes, although uptake was clearly regulated by alterations in iron metabolism. Iron uptake from FeNTA₂ did show pH dependent uptake, but this could be explained by pH dependence of ferric reductase activity rather than of divalent metal transport.

Conclusions

Cadmium uptake by duodenum is increased by genetic hypotransferrinaemia; therefore increased cadmium uptake by duodenum can occur in hereditary iron overload conditions. We could not, however, demonstrate a pH dependency of cadmium uptake in mouse duodenum.

Acknowledgement

We are grateful to the UK MRC and Wellcome trust for financial support.

References

- Akesson A, Stal P, Vahter M. 2000 Phlebotomy increases cadmium uptake in hemochromatosis. Environ Health Perspect 108, 289–291.
- Andersen O, Nielsen JB, Sorensen JA, Scherrebeck L. 1994 Experimental localization of intestinal uptake sites for metals (Cd, Hg, Zn, Se) in-vivo in mice. *Environ Health Perspect* 102, 199–206.
- Bannon DI, Abounader R, Lees PS, Bressler JP. 2003 Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. *Am J Physiol Cell Physiol* **284**, C44–C50.

- Barany E, Bergdahl IA, Bratteby LE, Lundh T, Samuelson G, Skerfving S, Oskarsson A. 2005 Iron status influences trace element levels in human blood and serum. *Environ Res* 98, 215–223.
- Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D. 2004 Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci. 1012, 142–152.
- Canonne-Hergaux F, Levy JE, Fleming MD, Montross LK, Andrews NC, Gros P. 2001 Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. *Blood* 97, 1138–1140.
- Dorey C, Cooper C, Dickson DPE, Gibson JF, Simpson RJ, Peters TJ. 1993 Iron speciation at physiological pH in media containing ascorbate and oxygen. *Br J Nutr* **70**, 157–169.
- Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N, Roth MP, Coppin H. 2002 Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. *Gut* 51, 648–653.
- Elisma F, Jumarie C. 2001 Evidence for cadmium uptake through Nramp2: metal speciation studies with Caco-2 cells. *Biochem Biophys Res Commun* **285**, 662–668.
- Flanagan PR, Haist J, Valberg LS. 1980 Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium. *J Nutr* **110**, 1754–1763.
- Flanagan PR, McLellan JS, Haist J, Cherian G, Chamberlain MJ, Valberg LS. 1978 Increased dietary cadmium absorption in mice and human subjects with iron deficiency. *Gastroenterology* 74, 841–846.
- Foulkes EC. 1979 Some determinants of intestinal cadmium transport in the rat. *J Environ Pathol Toxicol* **3**, 471–481.
- Foulkes EC. 1991 Further findings on the mechanism of cadmium uptake by intestinal mucosal cells (step 1 of cd absorption). *Toxicology* **70**, 261–270.
- Friberg L, Elinder C, Kjellstrom T, Nordberg G. 1986 Cadmium and Health: A Toxicological and Epidemiological Appraisal. Boca Raton, FL: CRC Press.
- Frisancho AR. 1975 Functional adaptation to high altitude hypoxia. *Science* **187**, 313–319.
- Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. 2005 Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115, 1258–1266.
- Gunshin H, Mackenzie B, Berger U, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. 1997 Cloning and characterization of a mammalian proton coupled metal ion transporter. *Nature* 388, 482–488.
- Hinkle PM, Shanshala ED, Nelson EJ. 1993 Measurement of intracellular cadmium with fluorescent dyes further evidence for the role of calcium channels in cadmium uptake. *J Biol Chem* **267**, 25553.
- Latunde-Dada GO, Vulpe CD, Anderson GJ, Simpson RJ, Mckie AT. 2004 Tissue-specific changes in iron metabolism genes in mice following phenylhydrazine-induced haemolysis. *Biochim Biophys Acta* **1690**, 169–176.
- Lou M, Garay R, Alda JO. 1991 Cadmium uptake through the anion-exchanger in human red-blood-cells. J Physiol 443, 123–136.
- Lucas M. 1983 Determination of acid surface pH in vivo in rat proximal jejunum. *Gut* **24**, 734–739.
- Miret S, Simpson RJ, Mckie AT. 2003 Physiology and molecular biology of dietary iron absorption. *Annu Rev Nutrition* 23, 283–301.

- Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H. 2003 Cadmium transport by human Nramp 2 expressed in *Xenopus laevis* oocytes. *Toxicol Appl Pharmacol* 187, 162–167.
- Park JD, Cherrington NJ, Klaassen CD. 2002 Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. *Toxicol Sci* **68**, 288–294.
- Pountney DJ, Konijn AM, Mckie AT, Peters TJ, Raja KB, Salisbury JR, Simpson RJ. 1999 Iron proteins of duodenal enterocytes isolated from mice with genetically and experimentally altered iron metabolism. *Br J Haematol* 105, 1066–1073.
- Ragan HA. 1977 Effects of iron deficiency on the absorption and distribution of lead and cadmium in rats. J Lab Clin Med 90, 700–706.
- Raja KB, Bjarnason I, Simpson RJ, Peters TJ. 1987a In vitro measurement and adaptive response of Fe³⁺ uptake by mouse intestine. *Cell Biochem Func* **5**, 69–76.
- Raja KB, Simpson RJ, Peters TJ. 1987b Comparison of 59Fe³ + uptake in vitro and in vivo by mouse duodenum. Biochim Biophys Acta 901, 52–60.
- Raja KB, Simpson RJ, Peters TJ. 1992 Investigation of a role for reduction in ferric iron uptake by mouse duodenum. *Biochim Biophys Acta* 1135, 141–146.
- Raja KB, Simpson RJ, Peters TJ. 1994 Intestinal iron absorption studies in mouse models of iron-overload. Br J Haematol 86, 156–162.

- Savigni DL, Morgan EH. 1998 Transport mechanisms for iron and other transition metals in rat and rabbit erythroid cells. *J Physiol* **508**, 837–850(Pt 3).
- Simpson RJ. 1996 Dietary iron levels and hypoxia independently affect iron absorption in mice. J Nutr 126, 1858–1864.
- Simpson RJ, Lombard M, Raja KR, Thatcher R, Peters TJ. 1991 Iron absorption by hypotransferrinaemic mice. Br J Haematol 78, 565–570.
- Simpson RJ, Peters TJ. 1990 Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. *Br J Nutr* **63**, 79–89.
- Sorensen JA, Nielsen JB, Andersen O. 1993 Identification of the gastrointestinal absorption site for cadmium chloride in-vivo. *Pharmacol Toxicol* 73, 169–173.
- Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai SK, Sharp P. 2000 Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. *J Biol Chem* 275, 1023–1029.
- Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. 2002 Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. *Blood* **100**, 3776–3781.
- Zalups RK, Ahmad S. 2003 Molecular handling of cadmium in transporting epithelia. *Toxicol Appl Pharmacol* 186, 163–188.